{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\"\"\"2024/12月份開灌之資料DataDate年分會歸到2025,修正為2024\"\"\"" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
WorkStationIdWorkStationGrpIdDataYearPeriodNoCropTypeDataDateCalcArea
007002070020320251TR2025-01-2916296.17
107002070020420251TR2025-01-2921953.26
207002070020520251TR2025-01-2914863.00
307003070030120251TR2025-01-293409.74
407003070030220251TR2025-01-2960775.90
........................
249414009140091120251TR2025-01-0411819.93
249514009140091220251TR2025-01-047549.19
249614009140091320251TR2025-01-043632.57
249714009140091620251TR2025-01-045135.79
249814009140091820251TR2025-01-044454.13
\n", "

2499 rows × 7 columns

\n", "
" ], "text/plain": [ " WorkStationId WorkStationGrpId DataYear PeriodNo CropType DataDate \\\n", "0 07002 0700203 2025 1 TR 2025-01-29 \n", "1 07002 0700204 2025 1 TR 2025-01-29 \n", "2 07002 0700205 2025 1 TR 2025-01-29 \n", "3 07003 0700301 2025 1 TR 2025-01-29 \n", "4 07003 0700302 2025 1 TR 2025-01-29 \n", "... ... ... ... ... ... ... \n", "2494 14009 1400911 2025 1 TR 2025-01-04 \n", "2495 14009 1400912 2025 1 TR 2025-01-04 \n", "2496 14009 1400913 2025 1 TR 2025-01-04 \n", "2497 14009 1400916 2025 1 TR 2025-01-04 \n", "2498 14009 1400918 2025 1 TR 2025-01-04 \n", "\n", " CalcArea \n", "0 16296.17 \n", "1 21953.26 \n", "2 14863.00 \n", "3 3409.74 \n", "4 60775.90 \n", "... ... \n", "2494 11819.93 \n", "2495 7549.19 \n", "2496 3632.57 \n", "2497 5135.79 \n", "2498 4454.13 \n", "\n", "[2499 rows x 7 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_excel('tbl_CropAreaData_RealTime2025_1140218.xlsx', dtype={'WorkStationId': str, 'WorkStationGrpId': str})\n", "df" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "WorkStationId object\n", "WorkStationGrpId object\n", "DataYear int64\n", "PeriodNo int64\n", "CropType object\n", "DataDate datetime64[ns]\n", "CalcArea float64\n", "dtype: object" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.dtypes" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "df['DataDate'] = pd.to_datetime(df['DataDate'])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df['DataDate'] = df['DataDate'].apply(lambda x: x.replace(year = x.year - 1) if x.month == 12 else x)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
WorkStationIdWorkStationGrpIdDataYearPeriodNoCropTypeDataDateCalcArea
007002070020320251TR2025-01-2916296.17
107002070020420251TR2025-01-2921953.26
207002070020520251TR2025-01-2914863.00
307003070030120251TR2025-01-293409.74
407003070030220251TR2025-01-2960775.90
........................
249414009140091120251TR2025-01-0411819.93
249514009140091220251TR2025-01-047549.19
249614009140091320251TR2025-01-043632.57
249714009140091620251TR2025-01-045135.79
249814009140091820251TR2025-01-044454.13
\n", "

2499 rows × 7 columns

\n", "
" ], "text/plain": [ " WorkStationId WorkStationGrpId DataYear PeriodNo CropType DataDate \\\n", "0 07002 0700203 2025 1 TR 2025-01-29 \n", "1 07002 0700204 2025 1 TR 2025-01-29 \n", "2 07002 0700205 2025 1 TR 2025-01-29 \n", "3 07003 0700301 2025 1 TR 2025-01-29 \n", "4 07003 0700302 2025 1 TR 2025-01-29 \n", "... ... ... ... ... ... ... \n", "2494 14009 1400911 2025 1 TR 2025-01-04 \n", "2495 14009 1400912 2025 1 TR 2025-01-04 \n", "2496 14009 1400913 2025 1 TR 2025-01-04 \n", "2497 14009 1400916 2025 1 TR 2025-01-04 \n", "2498 14009 1400918 2025 1 TR 2025-01-04 \n", "\n", " CalcArea \n", "0 16296.17 \n", "1 21953.26 \n", "2 14863.00 \n", "3 3409.74 \n", "4 60775.90 \n", "... ... \n", "2494 11819.93 \n", "2495 7549.19 \n", "2496 3632.57 \n", "2497 5135.79 \n", "2498 4454.13 \n", "\n", "[2499 rows x 7 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "df.to_excel('tbl_CropAreaData_RealTime2025_1140218_yearFixed.xlsx', index=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }